## Section 5.3

Definition of Inverse Function: A function $g$ is the inverse function of the function $f$ when

$$
f(g(x))=x \text { for each } x \text { in the domain of } g
$$

and

$$
g(f(x))=x \text { for each } x \text { in the domain of } f .
$$

The function $g$ is denoted by $f^{-1}$ (read " $f$ inverse").
Reflective Property of Inverse Functions: The graph of $f$ contains the point $(a, b)$ if and only if the graph of $f^{-1}$ contains the point $(b, a)$.

Theorem: The Existence of an Inverse Function

1. A function has in inverse if and only if it is one-to-one.
2. If $f$ is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse function.

## Guidelines for Finding an Inverse Function

1. Use the Theorem above to determine whether the function $y=f(x)$ has an inverse function.
2. Solve for $x$ as a function of $y$ : $x=g(y)=f^{-1}(y)$.
3. Interchange $x$ and $y$. The resulting equation is $y=f^{-1}(x)$.
4. Define the domain of $f^{-1}$ as the range of $f$.
5. Verify that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.

The Derivative of an Inverse Function: Let $f$ be a function that is differentiable on an interval I. If $f$ has an inverse function $g$, then $g$ is differentiable at any $x$ for which $f^{\prime}(g(x)) \neq 0$. Moreover,

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}, \quad f^{\prime}(g(x)) \neq 0
$$

1) Show that the functions $f(x)=\sqrt{4 x+5}$ and $g(x)=\frac{x^{2}-5}{4}$ are inverse functions of each other.
2) Which of the following functions has an inverse function?
a) $f(x)=2 x^{3}+x-1$
b) $f(x)=3 x^{3}-x-2$
3) Find the inverse function of

$$
f(x)=\sqrt{5 x+7}
$$

Identify the domain and range of $f(x)$ and $f^{-1}(x)$.
4) Show that the cosine function $f(x)=\cos x$ is not one-to-one on the entire real line. Then find the largest interval for which $f$ is strictly monotonic (either increasing or decreasing).
5) Let $f(x)=x^{3}+2 x-1$.
a) What is the value of $f^{-1}(x)$ when $x=2$ ?
b) What is the value of $\left(f^{-1}\right)^{\prime}(x)$ when $x=2$ ?

